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ABSTRACT Toad ventricles were exter-
nally driven by periodic pulses while
monophasic action potential (MAP) sig-
nals were recorded in seven excised
and seven in situ ventricles. As the
frequency was slowly increased in
steps, the stimulated tissue displayed
several dynamic characteristics. Hier-
archies of periodic behavior, like
phase-locking and period-doubling se-

quences leading to chaos, were

observed. Results showed that subhar-
monic bifurcations (order one and two)
and chaotic-like behavior may system-
atically occur in the MAP signal within a

definite frequency interval in the 1:1
phase locking regime. The chaotic, or

more cautiously expressed, chaotic-
like behavior is characterized by the
power spectrum, the autocorrelation
function, the Poincare map, and the
reconstructed 2-D phase portrait. It is

concluded that (a) bifurcations of order
one and two and the characteristic
irregular behavior are evidences of
local universal chaotic dynamics in car-

diac tissue; (b) there are no qualitative
differences in the dynamics of the in
situ and excised ventricles; and (c)
fibrillation seems to be related to
chaotic behavior, but whether they are

similar or equivalent phenomena still
remains to be seen.

INTRODUCTION

Many efforts have been devoted to elucidate the electro-
physiological mechanisms involved in cardiac tissue
dynamics. At least two basic mechanisms may account
for the onset of rapid ventricular arrhythmias: reentry
and transformation of nonpacemaker fibers into pace-
maker ones (1).
At the present time, new electrophysiological behaviors

have been described in nerve and cardiac tissue. Best (2)
found phase resetting and annihilation caused by a single
pulse during rhythmic firing regime of the Hodgkin-
Huxley model due to constant current application. The
same phenomena in spontaneous rhythmic isolated car-

diac pacemaker cells were found by Jalife and Antzele-
vitch (3). Phase resetting, annihilation, and chaotic
dynamics are closely related phenomena (4). This kind of
behavior was also found by numerical simulations in the
Beeler and Reuter model of cardiac action potential in the
presence of periodic stimulation or when suitable depolar-
izing constant currents were injected (5-7). The same

dynamics were described and widely studied in solvable
models of relaxation oscillators, which allow a complete
geometrical understanding of the problem (4, 8-11).
Experiments on cardiac tissue have also shown chaotic
dynamics using self-oscillating cells, or aggregates of
cells, externally perturbed by periodic pulses (12). Altera-
tions in clinical electrocardiographic records due to non-

linear cardiac dynamics poses a major problem yet to be
solved. There is a growing interest in the application of
nonlinear models to some of the rapid ventricular arrhyth-
mias. Ritzenberg (13) reported evidence of nonlinear

behavior (period demultiplying regime or, as proposed by
these authors, "period multupling") in the electrocardio-
gram and arterial blood pressure traces from the nor-

adrenaline-intoxicated dog. Besides, Goldberger (14)
studied the ECG and epicardial electrogram frequency
spectra during fibrillation in an effort to find out whether
fibrillation is "chaos."

This paper intends to analyze whether rapid, induced
cardiac rhythms can be described by nonlinear chaotic-
like models. If this is the case, at least one route to chaos
should be identified in some observable variable or

parameter, and thus the irregular behavior could be
defined as "chaotic." The cardiac monophasic action
potential (MAP) is taken as the basic raw signal, and its
behavior will be considered as chaotic if (a) it is preceded
by period-doubling bifurcations, (b) the power spectrum
displays broad band noise in the low frequency region, (c)
the autocorrelation function decays rapidly, (d) the Poin-
care map shows space-filling points, and (e) the phase-
portrait in the bidimensional space presents characteris-
tics similar to other known chaotic attractors.

MATERIALS AND METHODS

Experimental set-up
Pacing stimuli of increasing frequency were applied to 14 Bufo arena-
rum ventricles (mean weight, 3.5 g; SD = 1.0). Seven ventricles were
removed and perfused with Ringer solution using a cannula. To do this,
we fixed the ventricles to the cannula by a ligature at the level of the
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atrioventricular junction and maintained them at room temperature
(200C). Under these conditions, the ventricles generally stopped; excep-

tionally, they discharged at very slow rate in an erratic fashion. The
stimulator was then turned on and pacing began at low frequency (10
ppm) and slowly increased in steps (Fig. 1).
The other seven ventricles were exposed in situ (spontaneous rate,

-25 ppm). The applied stimulus frequency was slowly stepped up,

beginning at 60 ppm, and removed when fibrillation or evident desyn-
chronization was obtained. This was repeated twenty times in each
animal. In both cases, in situ and excised ventricles, the periodic stimuli
were applied near the base of the ventricles by means of two fine
nichrome wires inserted very close to each other. Stimulus amplitude
was fixed at twice the capture threshold (3 mA), and duration was fixed
at 2 ms. A model 588 stimulator (Grass Instrument Co., Quincy, MA)
was used together with stimulus isolation and constant current units.
Surface electrocardiogram (ECG) and monophasic action potentials
(MAP) were recorded on a polygraph (model 2600S; Gould Inc., Santa
Clara, CA). The MAP signal (15, 16) was obtained with a suction
electrode (external diameter, 1 mm) applied on the epicardial surface of
the ventricles. In all cases, this electrode was placed 5 mm apart from
the stimulating one. Such distance is sufficiently far off to ensure almost
no influence of electronic spread because the length constant of frog
cardiac tissue is in the order of 0.385 mm (17). Shanne and Ruiz Ceretti
(18), in their book, collected a number of length constant values
reported in the literature. The range for cardiac tissue (ventricle and

IN VIVO VENTRICLE

atrium) in different species goes from a minimum of 0.05 mm up to 2.6
mm, with an average of 0.93 mm (SD = 0.71) calculated by us over 14
values taken from a table published by these authors. Thus, perhaps we
should consider 1 mm as a good representative value for the cardiac
tissue length constant. Even so, the influence at 5 mm of the electrotonic
spread is negligible. Also, the MAP signal was visualized and stored in a

oscilloscope (model T912; Tektronix, Inc., Beaverton, OR). In seven

cases (three in vivo and four perfused), this signal was digitalized and
stored in a computer disk to perform statistical analysis. Digitalization
was carried out by taking 20,000 samples, one every 2 ms during 40 s,

with an A/D converter. The MAP signal was distorted by the superposi-
tion of the electrocardiographic artifact (ECG) which was, as a rule, less
prominent in the records with the larger MAP amplitude. In all cases,
we tried to minimize the ECG artifact. Fig. 1 summarizes the experi-
mental set-up, both for the excised and in situ cases. Fig. 2 shows the
ECG (A) and the MAP signal (B) from an in situ heart, obtained
simultaneously. In this situation, the amplitude and duration parame-

ters of the MAP can be easily measured. Observe that the base line
displacement is small. In all the experiments, attention was focused on

observing periodic differences in the MAP amplitudes, its stability, and
repeatability.

Signal processing
Power spectra and autocorrelation values were calculated from 40 s

(20,000 data points) pieces of stable MAP signal runs to detect periodic
behavior and to qualitatively characterize its irregular nature. Power
spectra calculation was repeated twice to assess the stability of the
signal, first for the overall 40-s piece, then for the first 20 s, and finally
for the second 20 s. Stable behavior was assumed when all three
calculated spectra along with the recorded MAP temporal series showed
no changes. Besides, we recorded the maximum MAP amplitude, X,j, for
each beat by taking the difference between the peak value and the base
line previous to each stimulus artifact.
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FIGURE 1 Experimental set-up. (Top) For the in vivo ventricle. (Bot-
tom) For the perfused ventricle. The stimulator was isolated and its
frequency was verified by measuring with an oscilloscope (not shown)
the applied stimulus period. Besides, readings were also made on the
instrument dials (model S88; Grass Investment Co., Quincy, MA). The
monophasic action potential (MAP) was sent to an oscilloscope (OSC)
and also to the A/D converter (a laboratory custom-made equipment)
and a graphic recorder (model 2600S; Gould Inc., Santa Clara, CA).
The electrocardiogram (ECG) was obtained from simple subcutaneous
needle leads.
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FIGURE 2 (A) Surface electrocardiogam (ECG). (B) Monophasic
action potentials (MAP) from toad ventricle. Frequency: 33 ppm. MAP
duration: 1 s. MAP amplitude: 61 mV.
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Nonperiodic behavior of the MAP signal perhaps could be character-
ized by a chaotic attractor due to some observed features of determinis-
tic chaos. Taking this possibility into account, bidimensional phase
portraits were reconstructed by means of the embedding technique
(19-21), starting with the MAP temporal series to (a) assess their
structure, and (b) estimate the sensitivity to the initial conditions
presented by the system.
A phase portrait is the set of trajectories in the phase space, for a

given set of control parameters, for all the possible initial conditions of
the system. By and large multidimensional, it contains considerable
information. Suffice it to say that a single point fully characterizes the
whole system at a given instant.

For an observable X(t)-the MAP signal-and a delay T, an
m-dimensional phase portrait is constructed with vectors of the type

X(t) = IX(tk),

* X(tk + T), X(tk + 2T),. .X[tk + (m - )T]
in which tk = kAt, for k = 1, 2,.. . o, and m is the embedding
dimension. This portrait will have the same properties as the n-
dimensional original phase portrait with n independent variables of the
dynamic system under study (in our case, the ventricles). The condition
m 2 2n + 1 must be verified. The delay T can be arbitrarily chosen. We
took it as equal to the time of the first zero crossing of the correlation
function (see Results).
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RESULTS

The 14 driven ventricles studied showed period-doubling
sequences and phase-locking responses in the MAP
amplitudes when the pacing rate was high. In Fig. 3, the
amplitude period-doubling sequences of a perfused ven-

tricle in 1:1 frequency locking regime are shown. In Fig.
3 A, at 88 ppm, a difference between successive crests of
the MAP amplitude is not evident, but careful observa-
tion detects small differences. Nevertheless, if the fre-
quency increased (from 88 to 97 ppm) the amplitude
difference between succesive MAP crests is more evident,
as in Fig. 3 B, where the amplitude difference between the
ab, ab, series is -4.3 mV, corresponding to a 9% ampli-
tude change. In Fig. 3 C, the amplitude difference
between the a, b waves of the MAP is -6.4 mV (ampli-
tude change 13%) at 102 ppm. However, in Fig. 3 A-C,

FIGURE 3 Period-doubling sequences and chaotic behavior of the MAP
signal amplitude in the 1:1 frequency locking of a perfused toad
ventricle. All the MAP signals are preceded by the stimulus artifact.
Frequency increases from panel A (88 ppm) to E (1 13 ppm) (see text).

there are only two different amplitudes indicated by a and
b. This is a period two pattern (see also Table 1), the first
period-doubling bifurcation, meaning that this is repeated
at twice the stimulator period or half frequency (F/2).
This might be interpreted as the first, or order one (2')
amplitude bifurcation, in the 1:1 frequency locking regi-
men, which is observed in all cases within the interval of
90-110 ppm. Fig. 3 D shows a pattern of four different
MAP amplitudes, a period four pattern, the second

TABLE 1 Qualitative characterization of the map signal in the 1:1 phase-locking regime

Driving frequency F Subharmonic
MAP time frecuency Correlation 2D-trajectory Poincar6

Behavior Perfused In vivo Periodicity series pattern spectrum C (X) number map

ppm ppm
<80 <200 Period 1 lllLLUJJJJJ F Continue One Single point

Periodic 80-100 210-240 Period 2 l I I I I IlIJ F; F/2 Oscillates Two Two points

100-120 230-300 Period 4 i 1 1 l F; F/2 Oscillates Four Four points
[l i I ll | | | F/4;3F/4

Nonperiodic >120 >250 Cuasiperiodic l1 l1l1 Broadband Decays quickly Many bands Many map-filling
or chaotic L noise points
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period-doubling bifurcation, indicated by the a, b, c, and d
series. The period of this pattern is four times the stimu-
lating period or quarter frequency (F/4). This might be
interpreted as the second bifurcation or order two (22)
bifurcation, and is observed within the interval of 100-
120 ppm. The exponent gives the bifurcation order. A
short frequency increase changes the pattern formerly
observed into an irregular behavior, probably a higher
order (2k) bifurcation or chaotic behavior. In Fig. 3 E all
the MAP amplitudes are different, i.e., there is no recog-
nizable amplitude pattern.
The same phenomena formerly described in perfused

ventricles were observed in in situ ventricles. In this case,

the sinus venosus and the atria of the in situ heart did
continue their beating. Nevertheless, no qualitative dif-
ference was detected in the observed period-doubling
sequences. The frequency intervals were 210-240 ppm

and 230-300 ppm for the period two and period four (first
and second order bifurcations), respectively. Fig. 4 shows
sequences of MAP amplitude period-doubling bifurca-
tions for the in situ toad ventricle. In Fig. 4 A, the control
and calibration MAP signals are displayed, the sponta-
neous rhythm was 30 ppm and the maximum MAP
amplitude was 60 mV. The arrow indicates the beginning
of stimulation. Fig. 4 B shows a period two. Only two
MAP amplitudes alternate at twice the driving stimulator
period (the period of this pattern is indicated by the bar
between the arrows). The frequency of the stimulator was
250 ppm. This can be verified with the stimulus artifact.
Also, the difference in the MAP amplitudes is -2.8 mV
(amplitude change 6.8%). At the same frequency but
after 30 s, Fig. 4 C shows period four sequences. Now,
four different MAP amplitudes are being repeated every

four stimulator periods; the period of this pattern is
indicated by the bar between arrows. These periodicities
are sensitive to small driving frequency changes and
show, by and large, good stability for several tens of
seconds or even minutes. In Fig. 4 D, an irregular
aperiodic amplitude variation in the 1:1 regime was

established at 300 ppm. In principle, no pattern can be
recognized. When the frequency was slightly increased
(Fig. 4 E), the MAP signal desynchronized and looked
like fibrillation.

Fig. 5, A and B, illustrates periodic behaviors of periods
2 and 4, respectively. The corresponding spectra depict
maxima at F and F/2 (for period 2) and F, F/4, F/2, and
3F/4 (for period 4). Fig. 5 C describes the irregular
behavior. Maxima were replaced by a noise band in the
low frequency side (frequencies lower than the pacing
one). Nontheless, and due to the 1:1 phase-locking, the
pacemaker frequency (2 Hz) appears as a peak in the
power spectrum. Appearance of these frequencies suggest
a route to chaos via period-doubling bifurcations.

Fig. 6 is a bidimensional phase portrait during the

FIGURE 4 Period-doubling sequences of MAP amplitude in in situ
ventricles. Control MAP signals are shown in A. At the arrow, the
stimulator was connected and the stimulus signal appears superimposed
to the upstroke of the MAP. The amplitude calibration (rectangular
pulse after the first beat in A) is 10 mV. Time scale is the same for B, C,
and D.

MAP time series irregular behavior reconstructed by
means of the embedding technique (19). It shows the
intersection between the two-dimensional orbits and the
indicated straight line (Fig. 6, dashed line). Intersection
points XJ are used to construct the Poincare map in the
plane XR1 versus Xn. To obtain greater differences, this
line was adjusted according to the maxima, X;, of the
MAP signal. Under these conditions, the Poincare map

for maxima is obtained by simply plotting X", I versus Xn.
Fig. 7 shows such a map for the period 4 periodic solution
obtained with 160 beats. Plotted values are indicated in
Fig. 5 B as'X , X2, X3, andX4.
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FIGURE 5 Time series reconstructed from the analogue MAP signal (perfused ventricle). By them, the corresponding power spectra are displayed. F,
driving frequency.

Results of the tests performed to characterize periodic
and nonperiodic behavior, in the 1:1 regime, are summa-
rized in Table 1. Temporal MAP series are displayed to
indicate the observed periodic patterns. The column
labeled Subharmonic frequency spectrum gives those
frequencies present in the power spectra shown in Fig. 5.
The column Correlation displays the result of the auto-
correlation calculation for the MAP amplitude Xi. The
autocorrelation did not change for period 1, oscillated

around zero for periods 2 and 4, and decayed rapidly for
the nonperiodic case. The column before the last summa-
rizes the bidimensional phase portrait results. For the
periodic case, there were separate orbits: one for period 1,
two for period 2, and four for period 4. Orbits became
bands in the nonperiodic case (Fig. 6). In all cases, near
the stimulus artifact (P in Fig. 6), trajectories narrowed
down to almost a line and, thereafter (-50 ms later), open
up to become bands. This means that two consecutive
beats with trajectories very close to each other before the
stimulus will follow quite different paths, as indicated by

a-4
Ho-

X(tk)

FIGURE 6 Two-dimensional projection, IX(tk + T) versus X(tk)I for
T = 20 ms, of a likely higher-dimension chaotic attractor. It corresponds
to the temporal series shown in Fig. 5 C. There are 180 superimposed
beats. Point P indicates the stimulus artifact. T, and T2 indicate two
different trajectories originated at very close initial conditions right
before P. Dashed line marks a Poincare section.

FIGURE 7 One-dimensional Poincar6 map X, +, versus XC for period 4.
There are 160 beats superimposed. Spread is likely due to inherent
experimental noise.
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T, and T2. In other words, there is sensitivity to the initial
conditions, a characteristic found in chaotic dynamic
systems. Finally, the last column (Table 1) shows the
number of points found in the Poincare maps. There was
one point for period 1 behavior, two for period 2, and four
for period 4. When the behavior was irregular, many
points filled the map. They could not be described by a
parametric straight line, confirming the irregularity of
the signal and suggesting a deviation from the unidimen-
sional description. Fig. 7 illustrates a Poincare map, X,,
versus Xn+1, for period 4 shown in Fig. 5 B, and shows the
spread of the experimental points (indicated by open
squares in the figure).

Fig. 8 A-C. shows the transition from 1:1 to 2:1
phase-locking response of the in situ paced ventricle. Fig.
8 A is a control strip. To the left of the arrow the natural
rhythm is 33 ppm. Before each MAP, we can see the
atrial activity. The arrow indicates the beginning of the
stimulation and the pacemaker stimulus artifact is
observed. As frequency increased, MAP amplitudes
decreased and a transient alternans in the MAP durations
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FIGURE 8 Phase-locking responses in MAP signals of toad ventricle.
The initial situation (33 ppm) before and during the stimulation is
shown in A. At the arrow, the stimulator was connected at 55 ppm.
Panels B and C show the development of the responses at 97 ppm. In B,
the change is interrupted by rapid oscillations. At the arrow the
stimulator was removed. In C, the premature response changes to one or
two rapid oscillations. Stimulator removed at the arrow.

can be observed. After the transient time, the MAP
duration stabilized to a mean value. In Fig. 8 B, at 97 ppm
frequency, big and small MAPs alternate periodically.
The small MAP is shorter in duration and amplitude and
is not preceded by a pause or diastolic period. These
responses change in different ways, sometimes with a
slight increase in frequency. The bigger MAP increased
both its duration and amplitude. The smaller MAP is
shorter in each cycle and finally was transformed into
rapid oscillations. At the arrow, pacing was stopped. The
oscillations persisted during 1.6 s, stopped, and the heart
reassumed its normal rhythm. In Fig. 8 C, the same
situation as in Fig. 8 B is illustrated, but in this case the
smaller MAP did not go into rapid oscillations. Only one
or two oscillations are seen in each cycle (right-hand part
of record). The stimulator frequency in Fig. 8 C is also 97
ppm. At the arrow, the stimulus was removed and the
heart reassumed its normal rhythm.

DISCUSSION

These results would support the hypothesis of a low-
dimensional chaotic attractor located in the simpler
amphibian cardiac syncytium in which a route to chaotic
behavior would appear by period-doubling bifurcation.
The experiment we describe is a useful model to assess
such possibility. The MAP signal, an extracellular but
rather localized record, seems to be adequate to show the
nonlinear dynamics of very small areas of cardiac tissue
using driving frequencies at which other recording tech-
niques (like surface ECG or direct electrogram) are not
able to supply much information. Recording of the MAP
signal is relatively easy to obtain, even from ventricles or
atria during tachycardia. The signal-to-noise ratio is
much better than with the ECG or the direct electrogram
because the MAP signal from toad ventricle, at normal
sinus rhythm, has an amplitude in the order of 60 mV.
Special attention must be given to the input amplifier
common mode rejection ratio (CMRR) to minimize the
interference from the rest of the myocardium electrical
activity. Toad ventricle is a good model for cardiac
nonlinear dynamics due to its inherent tissue homogeneity
and to the lack of coronary system, which are characteris-
tics of lower species hearts. The pacing frequency as a
control parameter is convenient, for it can be adjusted
very slowly and finely in steps to detect bifurcations which
appear within narrow ranges. Moreover, there is a direct
correlation with those theoretical oscillators wherein the
dynamics is studied by changing the driving frequency
and amplitude. Changing the driving frequency allows a
gradual approach to rapid arrhythmias and to disordered
behaviors, as the case is in mammalian fibrillation. Simi-
lar rhythms can be induced in toad ventricles (22). The
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described dynamics showed no change by increasing the
suprathreshold stimulus amplitude.
The period 2 (or first period doubling bifurcation) was

observed by other authors in the R and T waves of the
ECG (23) during tachycardia and also in the electrogram
and myogram of cardiac tissue. These sequences, with
only two different amplitudes, were called alternans but
no other significance was attributed to them. The second
period-doubling bifurcation (or period 4) is not easy to
obtain experimentally, probably because of (a) a narrow

frequency interval, (b) low stability, and (c) very small
differences between the amplitudes.

Higher order periodicities are very difficult to observe.
We have detected other periodicities (as period 8) but not
systematically. The period 4 was not detected in every

trial; it could well be that the frequency increasing steps
were too big to transfer the system directly to a high-order
bifurcation or to a different m:n phase-locking regime.
Nonetheless, the irregular behavior herein described as

chaotic is not necessarily fibrillation. The latter is perhaps
a more complex phenomenon in which several spatial and
temporal irregularities might coexist. For this reason and
for the time being, we do not attempt to answer Goldberg-
er's question whether fibrillation is (or is not) chaos (14).
Any subharmonic cardiac frequency regime (or "multup-
ling" regime, as called by Ritzenberg et al. [13]) found in
these experiments is probably similar to or the same kind
as those reported by the latter authors (13) and com-

monly named in cardiovascular physiology and cardiol-
ogy as "electrical alternans."
To illustrate theoretically the previously described

period-doubling bifurcations, we can make use of the
following simple unidimensional dynamic system,

Xn++ = Cn-

which was studied by Grebogi in 1987 (24). By iterating
about 100 times this equation, say, with C = 0.5 and
initial value X0 = 0, the values ofX tend progressively to a
single stable value. Such solution (or orbit) corresponds to
a period 1 (or order 0 bifurcation) similar to that observed
in Figs. 2 B and 4 A, where the MAP amplitude does not
change. Starting with the same initial condition as before
and C = 1.1, after enough iterations, X will stabilize in
two different values which correspond to a period 2
solution (or order 1 bifurcation). Figs. 3, A-C, and 4 B
show precisely such case, in which two different ampli-
tudes for the MAP signal are clearly depicted. If now we

start again from the same initial condition X0 but with
C = 1.3, after sufficient iterations, four different values
forXwill be reached, showing a new bifurcation, this time
of period 4 or order 2 bifurcation. Figs. 3 D and 4 C
display this situation showing four amplitudes for the
MAP signal. Finally, another iteration with C = 1.4 and
the same X0 will lead to a set of all different Xs because a

very large number of bifurcations take place (order n).
Figs. 3 E and 4 D would correspond to the latter case.

At present, a full understanding of the several and
complex electrophysiological mechanisms has not been
achieved. Our main objective would intend to answer the
question of why the MAP amplitudes are periodically
different. This may be due to the number of fibers that are

depolarizing (change) in every cycle or to the action
potentials of the fibers that periodically are functionally
different. In both cases, we would obtain periodic differ-
ences in the MAP signal amplitudes. As far as it is known,
this is still unexplained. In his postumous work in 1913,
Mines (25), attributed the electrical and mechanical
alternans to changes in the number of fibers that depolar-
ize. However, Kremers attributed them to refractory
period dispersion in the R and T waves of the ECG (23).
On the other hand, periodic differences of the MAP
amplitudes may be due to membrane nonlinear dynamics
(26). The following reasons would support the latter
explanation: (a) numerical integration of the Beeler and
Reuter equation system presents sequences of amplitude
period doubling and chaos (6, 7), (b) an experimental
detection of a chaotic behavior in cultured cardiac cells
was found by Guevara (12). Nevertheless, there is no

conclusive experimental confirmation in ventricular tis-
sue in situ. Interestingly enough, an autonomous nonoscil-
lating system, as a perfused ventricle, shows qualitative
dynamics similar to auto-oscillators which can be mod-
eled by circle maps (8-10).
The trajectories shown in Fig. 6 are a bidimensional

projection of a higher dimension attractor (probably
chaotic). The chaotic attractor hypothesis is suggested by
the band structure obtained from the bidimensional pro-

jection and also by the space-filling points in the Poincare
map. The existence of an approximately one-dimensional
Poincare map is suggested by the appearance of period-
doubling bifurcations. However, so far it has not been
demonstrated, perhaps because such a map is actually at
least bidimensional.
A most interesting observation is that an autonomous

nonoscillating system, as a perfused ventricle (where
there is no proper frequency to compete with the external
one), shows qualitative dynamics similar to spontaneously
beating cells (12) and to auto-oscillators which can be
modeled by circle maps (8-10). These observations agree

with results obtained from nonoscillatory sheep Purkinje
fibers when rhythmically driven (26). The observed peri-
od-doubling sequences leading to chaos would indicate
that fibrillation may be preceded by period-doubling and
higher order phase-locking regimes. In both, there were

evidences of an increase in the effective dimensionality of
the system.

In summary, the MAP signal temporal series irregular-
ity, the broadband noise at low frequency in the power
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spectrum, the rapid autocorrelation decay, the space-
filling points in the Poincare maps, the period-doubling
sequences, the band-like compression of the bidimen-
sional phase portrait trajectories and the sensivitivity to
initial conditions are supporting evidence, if not proof, of
a universal chaotic behavior in the toad ventricular elec-
trical activity. The possibility of a low-dimensional
chaotic attractor in its local dynamics ought to be con-
firmed by other types of measurements, such as the
Hausdorff dimension or a lower bound for the Kolmo-
gorov entropy.

It is concluded that (a) bifurcations of order one and
two and irregular behavior detected in the MAP signal
amplitude are evidences of universal chaotic dynamics in
cardiac tissue; (b) there are no qualitative differences in
the dynamics of the in situ (oscillating) and nonoscillating
(perfused) toad ventricles; and (c) fibrillation seems to be
related to chaotic behavior, but whether they are similar
or equivalent phenomena still remains to be seen.
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